On Neumann “superlinear” elliptic problems

نویسنده

  • Nikolaos Halidias
چکیده

In this paper we are going to show the existence of a nontrivial solution to the following model problem,

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Orlicz-sobolev Space Setting for Quasilinear Elliptic Problems

In this paper we give two existence theorems for a class of elliptic problems in an Orlicz-Sobolev space setting concerning both the sublinear and the superlinear case with Neumann boundary conditions. We use the classical critical point theory with the Cerami (PS)-condition.

متن کامل

Multiplicity of Solutions to Fourth-order Superlinear Elliptic Problems under Navier Conditions

We establish the existence and multiplicity of solutions for a class of fourth-order superlinear elliptic problems under Navier conditions on the boundary. Here we do not use the Ambrosetti-Rabinowitz condition; instead we assume that the nonlinear term is a nonlinear function which is nonquadratic at infinity.

متن کامل

Mesh Independent Superlinear PCG Rates Via Compact-Equivalent Operators

The subject of the paper is the mesh independent convergence of the preconditioned conjugate gradient method for nonsymmetric elliptic problems. The approach of equivalent operators is involved, in which one uses the discretization of another suitable elliptic operator as preconditioning matrix. By introducing the notion of compact-equivalent operators, it is proved that for a wide class of ell...

متن کامل

Superlinearly convergent PCG algorithms for some nonsymmetric elliptic systems

The conjugate gradient method is a widespread way of solving nonsymmetric linear algebraic systems, in particular for large systems arising from discretized elliptic problems. A celebrated property of the CGM is superlinear convergence, see the book [2] where a comprehensive summary is given on the convergence of the CGM. For discretized elliptic problems, the CGM is mostly used with suitable p...

متن کامل

Superlinear PCG algorithms: symmetric part preconditioning and boundary conditions

The superlinear convergence of the preconditioned CGM is studied for nonsymmetric elliptic problems (convection-diffusion equations) with mixed boundary conditions. A mesh independent rate of superlinear convergence is given when symmetric part preconditioning is applied to the FEM discretizations of the BVP. This is the extension of a similar result of the author for Dirichlet problems. The di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008